Abstract:
Purpose
The purpose of this study is to extend the classical noncentral F-distribution under normal settings to noncentral closed skew F-distribution for dealing with independent samples from multivariate skew normal (SN) distributions.
Design/methodology/approach
Based on generalized Hotelling's T2 statistics, confidence regions are constructed for the difference between location parameters in two independent multivariate SN distributions. Simulation studies show that the confidence regions based on the closed SN model outperform the classical multivariate normal model if the vectors of skewness parameters are not zero. A real data analysis is given for illustrating the effectiveness of our proposed methods.
Findings
This study’s approach is the first one in literature for the inferences in difference of location parameters under multivariate SN settings. Real data analysis shows the preference of this new approach than the classical method.
Research limitations/implications
For the real data applications, the authors need to remove outliers first before applying this approach.
Practical implications
This study’s approach may apply many multivariate skewed data using SN fittings instead of classical normal fittings.
Originality/value
This paper is the research paper and the authors’ new approach has many applications for analyzing the multivariate skewed data.
References:
- Adcock, C. and Azzalini, A. (2020), “A selective overview of skew-elliptical and related distributions and of their applications”, Symmetry, Vol. 12 No. 1, p. 118.
- Arellano-Valle, R., Bolfarine, H. and Lachos, V. (2005), “Skew-normal linear mixed models”, Journal of Data Science, Vol. 3 No. 4, pp. 415-438.
- Azzalini, A. (1985), “A class of distributions which included the normal ones”, Scandinavian Journal of Statistics, Vol. 12 No. 2, pp. 171-178.
- Azzalini, A. and Capitanio, A. (1999), “Statistical applications of the multivariate skew normal distribution”, Journal of the Royal Statistical Society. Series B (Statistical Methodology), Vol. 61 No. 3, pp. 579-602.
- Azzalini, A. and Valle, A.D. (1996), “The multivariate skew-normal distribution”, Biometrika, Vol. 83 No. 4, pp. 715-726.
- Carmichael, B. and Coën, A. (2013), “Asset pricing with skewed-normal return”, Finance Research Letters, Vol. 10 No. 2, pp. 50-57.
- Chen, J.T. and Gupta, A.K. (2005), “Matrix variate skew normal distributions”, Statistics, Vol. 39 No. 3, pp. 247-253.
- Cook, R.D. and Weisberg, S. (2009), An Introduction to Regression Graphics, John Wiley & Sons, New York, Vol. 405.
- Gonzalez-Farias, G., Dominguez-Molina, A. and Gupta, A.K. (2004), “Additive properties of skew normal random vectors”, Journal of Statistical Planning and Inference, Vol. 126 No. 2, pp. 521-534.
- Li, B., Tian, W. and Wang, T. (2018), “Remarks for the singular multivariate skew-normal distribution and its quadratic forms”, Statistics and Probability Letters, Vol. 137, pp. 105-112.
- Ma, Z., Chen, Y.-J., Wang, T. and Peng, W. (2019), “The inference on the location parameters under multivariate skew normal settings”, in Kreinovich, V., Trung, N. and Thach, N. (Eds), Beyond Traditional Probabilistic Methods in Economics, Springer Nature, pp. 146-162.
- Ma, Z., Zhu, X., Wang, T. and Autchariyapanitkul, K. (2018), “Joint plausibility regions for parameters of skew normal family”, in Krennovich, V., Sriboonchitta, S. and Chakpitak, N. (Eds), Predictive Econometrics and Big Data, Springer-Verlag, New York, pp. 233-245.
- Mardia, K.V., Kent, J.T. and Bibby, J.M. (1980), Multivariate Analysis (Probability and Mathematical Statistics).
- Wang, T., Li, B. and Gupta, A.K. (2009), “Distribution of quadratic forms under skew normal settings”, Journal of Multivariate Analysis, Vol. 100 No. 3, pp. 533-545.
- Wei, Z., Zhu, X. and Wang, T. (2021), “The extended skew-normal-based stochastic frontier model with a solution to ‘wrong skewness’ problem”, Statistics, pp. 1-20, doi: 10.1080/02331888.2021.2004142.
- Ye, R., Wang, T. and Gupta, A.K. (2014), “Distribution of matrix quadratic forms under skew-normal settings”, Journal of Multivariate Analysis, Vol. 131, pp. 229-239, 00010.
- Young, P.D., Harvill, J.L. and Young, D.M. (2016), “A derivation of the multivariate singular skew-normal density function”, Statistics and Probability Letters, Vol. 117, pp. 40-45.
- Zhu, X., Li, B., Wu, M. and Wang, T. (2018), “Plausibility regions on parameters of the skew normal distribution based on inferential models”, in Krennovich, V., Sriboonchitta, S. and Chakpitak, N. (Eds), Predictive Econometrics and Big Data, Springer-Verlag, New York, pp. 287-302.
- Zhu, X., Li, B., Wang, T. and Gupta, A.K. (2019), “Sampling distributions of skew normal populations associated with closed skew normal distributions”, Random Operators and Stochastic Equations, Vol. 27 No. 2, pp. 75-87.
- Zhu, X., Ma, Z., Wang, T. and Teetranont, T. (2017), “Plausibility regions on the skewness parameter of skew normal distributions based on inferential models”, in Krennovich, V., Sriboonchitta, S. and Huynh, V. (Eds), Robustness in Econometrics, Springer-Verlag, New York, pp. 267-286.