Tạp chí đã xuất bản
2004
ISSN
ISSN 2615-9813
ISSN (số cũ) 1859-3682

SỐ 186 | THÁNG 9/2021

Lược khảo các nghiên cứu về ứng dụng công nghệ phân tích dữ liệu lớn và trí tuệ nhân tạo trong quản trị rủi ro tín dụng của ngân hàng

Nguyễn Minh Sáng, Nguyễn Thị Hồng Vinh

Tóm tắt:

Các công nghệ đột phá như phân tích dữ liệu lớn và trí tuệ nhân tạo (TTNT) đã thay đổi cách thức hoạt động của ngân hàng. Nhà quản trị đang cố gắng tìm ra các giải pháp TTNT và dữ liệu lớn phù hợp với các chức năng quản trị rủi ro của ngân hàng. Việc tìm hiểu tài liệu về lĩnh vực này một cách hệ thống sẽ làm rõ hơn tầm quan trọng của việc ứng dụng TTNT và dữ liệu lớn trong quản trị rủi ro tín dụng (QTRRTD). Do đó, mục tiêu của bài viết này là cung cấp một đánh giá toàn diện về các nghiên cứu trong lĩnh vực ứng dụng TTNT và dữ liệu lớn trong QTRRTD thông qua phương pháp phân tích trắc lượng thư mục, phân tích hệ thống mạng lưới và phân tích khái niệm của các nghiên cứu đã công bố trong giai đoạn 1998–2021. Qua đó, kết quả nghiên cứu cho thấy trong giai đoạn trên có đến 192 nghiên cứu về ứng dụng TTNT và dữ liệu lớn trong QTRRTD. Các nghiên cứu đã sử dụng các phương pháp cũng như mô hình khác nhau để đánh giá rủi ro tín dụng. Trong đó, các phương pháp học nhóm, học sâu, học có giám sát, lựa chọn đặc trưng bằng cách sử dụng thuật toán di truyền cho thấy dự báo kết quả tốt hơn các phương pháp QTRRTD truyền thống.

 

Tài liệu tham khảo:

  1. Abedini, M., Ahmadzadeh, F., & Noorossana, R. (2016). Customer credit scoring using a hybrid data mining approach. Kybernetes, 45(10), 1576–1588. https://doi.org/10.1108/K-09-2015-0228
  2. Addo, P. M., Guegan, D., & Hassani, B. (2018). Credit Risk Analysis Using Machine and Deep Learning Models. Risks, 6(2), 38. https://doi.org/10.3390/risks6020038
  3. Altman, E. I., & Sabato, G. (2007). Modelling Credit Risk from SMEs: Evidence from the US Market. Abacus, 43, 332-357.
  4. Akkoç, S. (2012). An empirical comparison of conventional techniques, neural networks and the three stage hybrid Adaptive Neuro Fuzzy Inference System (ANFIS) model for credit scoring analysis: The case of Turkish credit card data. European Journal of Operational Research, 222(1), 168–178. https://doi.org/10.1016/j.ejor.2012.04.009
  5. Athey, S. (2018). The Impact of Machine Learning on Economics. The Economics of Artificial Intelligence: An Agenda. University of Chicago Press
  6. Athey, S., & Imbens, G. (2015). Machine Learning for Estimating Heterogeneous Causal Effects. Stanford University, Graduate School of Business.
  7. Assef, F., Steiner, M. T., Neto, P. J. S., & Franco, D. G. d B. (2019). Classification Algorithms in Financial Application: Credit Risk Analysis on Legal Entities. IEEE Latin America Transactions, 17(10), 1733–1740. https://doi.org/10.1109/TLA.2019.8986452
  8. Barboza, F., Kimura, H., & Altman, E. (2017). Machine learning models and bankruptcy prediction. Expert Systems with Applications, 83, 405–417. Scopus. https://doi.org/10.1016/j.eswa.2017.04.006
  9. Bastos, J. (2014). Ensemble Predictions of Recovery Rates. Journal of Financial Services Research, 46. https://doi.org/10.1007/s10693-013-0165-3
  10. Bequé, A., & Lessmann, S. (2017). Extreme learning machines for credit scoring: An empirical evaluation. Expert Systems with Applications, 86, 42–53. https://doi.org/10.1016/j.eswa.2017.05.050
  11. Butaru, F., Chen, Q., Clark, B., Das, S., Lo, A. W., & Siddique, A. (2016). Risk and risk management in the credit card industry. Journal of Banking and Finance, 72, 218–239. Scopus. https://doi.org/10.1016/j.jbankfin.2016.07.015
  12. Cubiles-De-La-Vega, M.-D., Blanco-Oliver, A., Pino-Mejías, R., & Lara-Rubio, J. (2013). Improving the management of microfinance institutions by using credit scoring models based on Statistical Learning techniques. Expert Systems with Applications, 40(17), 6910–6917. https://doi.org/10.1016/j.eswa.2013.06.031
  13. Dastile, X., Celik, T., & Potsane, M. (2020). Statistical and machine learning models in credit scoring: A systematic literature survey. Applied Soft Computing, 91, 106-263
  14. Financial Stability Board (2017). Artificial intelligence and machine learning in financial services – Market developments and financial stability implications, November.
  15. Financial Stability Board (2017). Big data, IFC Bulletin, 44, September.
  16. Galindo, J., & Tamayo, P. (2000). Credit risk assessment using statistical and machine learning: Basic methodology and risk modeling applications. Computational Economics, 15(1–2), 107–143. Scopus. https://doi.org/10.1023/a:1008699112516
  17. Gambacorta, L., Huang, Y., Qiu, H., & Wang, J. (2019). How do machine learning and non-traditional data affect credit scoring? New evidence from a Chinese fintech firm. Truy cập từ https://www.bis.org/publ/work834.htm
  18. García, V., Marqués, A. I., & Sánchez, J. S. (2019). Exploring the synergetic effects of sample types on the performance of ensembles for credit risk and corporate bankruptcy prediction. Information Fusion, 47, 88–101. Scopus. https://doi.org/10.1016/j.inffus.2018.07.004
  19. Guo, Y., & Dong, C. (2017). A novel intelligent credit scoring method using MOPSO. 2017 29th Chinese Control and Decision Conference (CCDC), 6584–6588. https://doi.org/10.1109/CCDC.2017.7978359
  20. Hamori, S., Kawai, M., Kume, T., Murakami, Y., & Watanabe, C. (2018). Ensemble Learning or Deep Learning? Application to Default Risk Analysis. Journal of Risk and Financial Management, 11, 12. https://doi.org/10.3390/jrfm11010012
  21. Hens, A. B., & Tiwari, M. K. (2012). Computational time reduction for credit scoring: An integrated approach based on support vector machine and stratified sampling method. Expert Systems with Applications, 39(8), 6774–6781. https://doi.org/10.1016/j.eswa.2011.12.057
  22. Huang, C.-L., Chen, M.-C., & Wang, C.-J. (2007). Credit scoring with a data mining approach based on support vector machines. Expert Systems with Applications, 33(4), 847–856. https://doi.org/10.1016/j.eswa.2006.07.007
  23. Kao, L.-J., Chiu, C.-C., & Chiu, F.-Y. (2012). A Bayesian latent variable model with classification and regression tree approach for behavior and credit scoring. Knowledge-Based Systems, 36, 245–252. https://doi.org/10.1016/j.knosys.2012.07.004
  24. Keramati, A., & Yousefi, N. (2011). A Proposed Classification of Data Mining Techniques in Credit Scoring. Proc. 2011 Int. Conf. on Industrial Engineering and Operations Management, Kuala Lumpur, Malaysia.
  25. Khandani, A. E., Kim, A. J., & Lo, A. W. (2010). Consumer credit-risk models via machine-learning algorithms. Journal of Banking and Finance, 34(11), 2767–2787. Scopus. https://doi.org/10.1016/j.jbankfin.2010.06.001
  26. Koutanaei, F. N., Sajedi, H., & Khanbabaei, M. (2015). A hybrid data mining model of feature selection algorithms and ensemble learning classifiers for credit scoring. Journal of Retailing and Consumer Services, 27, 11–23. https://doi.org/10.1016/j.jretconser.2015.07.003
  27. Kruppa, J., Schwarz, A., Arminger, G., & Ziegler, A. (2013). Consumer credit risk: Individual probability estimates using machine learning. Expert Systems with Applications, 40(13), 5125–5131. Scopus. https://doi.org/10.1016/j.eswa.2013.03.019
  28. Lanzarini, L. C., Villa Monte, A., Bariviera, A. F., & Jimbo Santana, P. (2017). Simplifying credit scoring rules using LVQ + PSO. Kybernetes, 46(1), 8–16. https://doi.org/10.1108/K-06-2016-0158
  29. Leo, M., Sharma, S., & Maddulety, K. (2019). Machine Learning in Banking Risk Management: A Literature Review. Risks, 7(1), 29. https://doi.org/10.3390/risks7010029
  30. Li, J., Wei, H., & Hao, W. (2013, May 22). Weight-Selected Attribute Bagging for Credit Scoring [Research Article]. Mathematical Problems in Engineering; Hindawi. https://doi.org/10.1155/2013/379690
  31. Li, Z. (2016). A New Method of Credit Risk Assessment of Commercial Banks. 2016 International Conference on Robots Intelligent System (ICRIS), 34–37. https://doi.org/10.1109/ICRIS.2016.7
  32. Lin, W.-Y., Hu, Y.-H., & Tsai, C.-F. (2012). Machine learning in financial crisis prediction: A survey. IEEE Transactions on Systems, Man and Cybernetics Part C: Applications and Reviews, 42(4), 421–436. Scopus. https://doi.org/10.1109/TSMCC.2011.2170420
  33. Loterman, G., Brown, I., Martens, D., Mues, C., & Baesens, B. (2012). Benchmarking regression algorithms for loss given default modeling. International Journal of Forecasting, 28(1), 161–170. https://doi.org/10.1016/j.ijforecast.2011.01.006
  34. Louzada, F., Ara, A., & Fernandes, G. B. (2016). Classification methods applied to credit scoring: Systematic review and overall comparison. Surveys in Operations Research and Management Science, 21(2), 117–134. https://doi.org/10.1016/j.sorms.2016.10.001
  35. Maldonado, S., Pérez, J., & Bravo, C. (2017). Cost-based feature selection for Support Vector Machines: An application in credit scoring. European Journal of Operational Research, 261(2), 656–665. https://doi.org/10.1016/j.ejor.2017.02.037
  36. Marqués, A. I., García, V., & Sánchez, J. S. (2013). On the suitability of resampling techniques for the class imbalance problem in credit scoring. Journal of the Operational Research Society, 64(7), 1060–1070. https://doi.org/10.1057/jors.2012.120
  37. Mullainathan, S., & Spiess, J. (2017). Machine Learning: An Applied Econometric Approach. Journal of Economic Perspectives, 31(2), 87–106
  38. Nazemi, A., Heidenreich, K., & Fabozzi, F. J. (2018). Improving corporate bond recovery rate prediction using multi-factor support vector regressions. European Journal of Operational Research, 271(2), 664–675.
  39. Onan, A., Korukoğlu, S., & Bulut, H. (2016). A multiobjective weighted voting ensemble classifier based on differential evolution algorithm for text sentiment classification. Expert Systems with Applications, 62, 1–16. Scopus. https://doi.org/10.1016/j.eswa.2016.06.005
  40. Ozturk, H., Namli, E., & Erdal, H. I. (2016). Modelling sovereign credit ratings: The accuracy of models in a heterogeneous sample. Economic Modelling, 54, 469–478. https://doi.org/10.1016/j.econmod.2016.01.012
  41. Piramuthu, S. (2004). Evaluating feature selection methods for learning in data mining applications. European Journal of Operational Research, 156(2), 483–494. Scopus. https://doi.org/10.1016/S0377-2217(02)00911-6
  42. Pławiak, P., Abdar, M., & Rajendra Acharya, U. (2019). Application of new deep genetic cascade ensemble of SVM classifiers to predict the Australian credit scoring. Applied Soft Computing Journal, 84. Scopus. https://doi.org/10.1016/j.asoc.2019.105740
  43. Tian, Y., Shi, Y., & Liu, X. (2012). Recent advances on support vector machines research. Technological and Economic Development of Economy, 18(1), 5–33. Scopus. https://doi.org/10.3846/20294913.2012.661205
  44. Tong, E. N. C., Mues, C., & Thomas, L. C. (2012). Mixture cure models in credit scoring: If and when borrowers default. European Journal of Operational Research, 218(1), 132–139. https://doi.org/10.1016/j.ejor.2011.10.007
  45. Töws, E. (2016). Advanced Methods for Loss Given Default Estimation. Doctoral dissertation, Universität zu Köln.
  46. Tsai, C.-F., & Hung, C. (2014). Modeling credit scoring using neural network ensembles. Kybernetes, 43(7), 1114–1123. https://doi.org/10.1108/K-01-2014-0016
  47. Twala, B. (2010). Multiple classifier application to credit risk assessment. Expert Systems with Applications, 37(4), 3326–3336. Scopus. https://doi.org/10.1016/j.eswa.2009.10.018
  48. van Liebergen, B. (2017). Machine learning: A revolution in risk management and compliance? Journal of Financial Transformation, 45, 60–67.
  49. Wang, J., Hedar, A.-R., Wang, S., & Ma, J. (2012). Rough set and scatter search metaheuristic based feature selection for credit scoring. Expert Systems with Applications, 39(6), 6123–6128. https://doi.org/10.1016/j.eswa.2011.11.011
  50. Wang, Y., Wang, S., & Lai, K. K. (2005). A new fuzzy support vector machine to evaluate credit risk. IEEE Transactions on Fuzzy Systems, 13(6), 820–831. Scopus. https://doi.org/10.1109/TFUZZ.2005.859320
  51. Yao, X., Crook, J., & Andreeva, G. (2017). Enhancing two-stage modelling methodology for loss given default with support vector machines. European Journal of Operational Research, 263(2), 679–689. https://doi.org/10.1016/j.ejor.2017.05.017
  52. Yeh, I.-C., & Lien, C. (2009). The comparisons of data mining techniques for the predictive accuracy of probability of default of credit card clients. Expert Systems with Applications, 36(2, Part 1), 2473–2480. https://doi.org/10.1016/j.eswa.2007.12.020
  53. Yi, B., & Zhu, J. (2015). Credit scoring with an improved fuzzy support vector machine based on grey incidence analysis. In Liu S., Yang Y., & Liu S. (Eds.), Proc. IEEE Int. Conf. Grey Syst. Intell. Serv., GSIS (Vols. 2015-October, pp. 173–178). IEEE Computer Society; Scopus. https://doi.org/10.1109/GSIS.2015.7301850
  54. Yu, L., Yang, Z., & Tang, L. (2016). A novel multistage deep belief network based extreme learning machine ensemble learning paradigm for credit risk assessment. Flexible Services and Manufacturing Journal, 28(4), 576–592.
  55. Zhao, Z., Xu, S., Kang, B. H., Kabir, M. M. J., Liu, Y., & Wasinger, R. (2015). Investigation and improvement of multi-layer perceptron neural networks for credit scoring. Expert Systems with Applications, 42(7), 3508–3516. https://doi.org/10.1016/j.eswa.2014.12.006
  56. Zhou, L., & Wang, H. (2012). Loan Default Prediction on Large Imbalanced Data Using Random Forests. TELKOMNIKA Indonesian Journal of Electrical Engineering, 10, 1519–1525. https://doi.org/10.11591/telkomnika.v10i6.1323
  57. Zhu, Y., Xie, C., Wang, G.-J., & Yan, X.-G. (2017). Comparison of individual, ensemble and integrated ensemble machine learning methods to predict China’s SME credit risk in supply chain finance. Neural Computing and Applications, 28, 41–50. Scopus. https://doi.org/10.1007/s00521-016-2304-x        


Artificial Intelligence and Big Data Applications in Credit Risk Management: A Systematic Review

Abstract:

Disruptive technologies such as artificial intelligence and big data analytics have transformed the way banks operate. Administrators are trying to find artificial intelligence and big data solutions that are suitable for the bank's risk credit management functions. A systematic study of the literature on this field will clarify the importance of artificial intelligence and big data in credit risk management. The aim of this paper is to provide a comprehensive review of research in the field of AI and big data applications in credit risk management using a bibliographic, intellectual network, and conceptual analysis of published studies during the period 1998 to 2021. The research results show that in the above period there are one hundred and ninety-two studies on the application of artificial intelligence and big data in credit risk management. Studies have used different methods as well as models to assess credit risk. In particular, group learning methods, deep learning, supervised training, feature or attribute selection using genetic algorithms show better predictive results than traditional methods.