Tạp chí đã xuất bản
ISSN 2615-9813
ISSN (số cũ) 1859-3682

SỐ 180 | THÁNG 3/2021

Ảnh hưởng của hạn chế tín dụng đến lượng tín dụng thương mại sử dụng bởi nông hộ trồng lúa ở Đồng bằng sông Cửu Long

Cao Văn Hơn, Lê Khương Ninh

Tóm tắt:

Mục tiêu của bài viết là ước lượng ảnh hưởng của hạn chế tín dụng đến lượng tiền mua chịu vật tư nông nghiệp (tín dụng thương mại) của nông hộ trồng lúa ở Đồng bằng sông Cửu Long (ĐBSCL). Dựa trên cơ sở lý thuyết, bài viết xây dựng chín giả thuyết về các yếu tố ảnh hưởng đến khả năng tiếp cận tín dụng của nông hộ trồng lúa và hai giả thuyết về ảnh hưởng của hạn chế tín dụng đến lượng tín dụng thương mại (TDTM) nông hộ sử dụng. Dữ liệu sử dụng trong nghiên cứu này được thu thập từ 1.065 nông hộ trồng lúa và được chọn ngẫu nhiên trong số 10 tỉnh (thành phố) ở ĐBSCL. Kết quả bước 1 của phương pháp PSM với hồi quy probit cho thấy giá trị đất, thu nhập, học vấn chủ hộ và khoảng cách đến ngân hàng có ảnh hưởng đến hạn chế tín dụng đối với nông hộ trồng lúa. Bước hai của phương pháp PSM chỉ ra rằng, nông hộ không bị hạn chế tín dụng sử dụng TDTM ít hơn so với nông hộ hạn chế tín dụng. Hơn nữa, lượng TDTM nông hộ sử dụng tăng theo mức độ hạn chế tín dụng. Kết quả này hàm ý rằng, TDTM đóng vai trò thay thế cho tín dụng chính thức.


Tài liệu tham khảo:

  1. Aaronson, D., Bostic, R.W., Huck, P., & Townsend, R. (2004). Supplier relationships and small business use of trade credit. Journal of Urban Economics, 55(1), 46-67.
  2. Abbink, K., Irlenbusch, B., & Renner, E. (2006). Group size and social ties in microfinance institutions. Economic Inquiry, 44(4), 614-628.
  3. Alesina, A., Giuliano, P. & Nunn, N. (2013). On the origins of gender roles: Women and the plough. Quarterly Journal of Economics, 128(2), 469-530.
  4. Awunyo-Vitor, D., Al-Hassan, R. M., Sarpong, D. B., & Egyir, I. (2014). Agricultural credit rationing in Ghana: What do formal lenders look for? Agricultural Finance Review, 74(3, 364 - 378.
  5. Ayyagari, M., Demirguc-Kunt, A., & Maksimovic, V. (2010). Formal versus informal finance: Evidence from China. Review of Financial Studies, 23(8, 3048-3097.
  6. Balachandran, R. P., & Dhal, S. C. (2018). Relationship between money lenders and farmers: Theoretical perspective and evidence from potato farmers of West Bengal, India. Agricultural Finance Review, 78(3), 330-347.
  7. Baird, T. D. & Gray. C. L. (2014). Livelihood diversification and shifting social networks of exchange: A social network transition? World Development, 60, 14-30.
  8. Barslund, M. & Tarp, F. (2008). Formal and informal rural credit in four provinces of Vietnam. Journal of Development Studies, 44(4), 485-503.
  9. Bellucci, A., Borisov, A., & Zazzaro, A. (2013). Do banks price discriminate spatially? Evidence from small business lending in local credit markets. Journal of Banking & Finance, 37(11), 4183-4197. 
  10. Bell. C., Srinivasan, T. N., & Udry, C. (1997). Rationing, spillover, and interlinking in credit markets: The case of rural Punjab. Oxford Economic Papers, 49(4), 557-585.
  11. Bento, A., Towe, C., & Geoghegan, J. (2007). The effects of moratoria on residential development: evidence from a matching approach. American Journal of Agricultural Economics, 89(5), 1211-18.
  12. Berger, A. N., Espinosa-Vega, M. A., Frame, W. S., & Miller, N. H. (2011). Why do borrowers pledge collateral? New empirical evidence on the role of asymmetric information. Journal of Financial Intermediation, 20, 55-70.
  13. Besley, T. (1994). How do market failures justify interventions in rural credit market? World Bank Research Observer, 9(1), 27-47.
  14. Bose, P. (1998). Formal-information sector interaction in rural credit markets. Journal of Development Economics, 56, 265-280.
  15. Boucher, S. & Guirkinger, C. (2007). Risk, wealth, and sectoral choice in rural credit markets. American Journal of Agricultural Economics, 89(4), 991-1004.
  16. Brewer, B. E., Wilson, C. A., Featherstone, A. M. & Langemeier, M. R. (2014). Multiple vs single lending relationships in the agricultural sector. Agricultural Finance Review, 74, 56-68.
  17. Briggeman, B. C., Towe, C. & Morehart, M. J. (2009). Credit constraints: Their existence, determinants, and implications for US farm and nonfarm sole proprietorships. American Journal of Agricultural Economics, 91(1), 275-89.
  18. Cerqueiro, G., Degryse, H. & Ongena, S. (2011). Rules versus discretion in loan rate setting. Journal of Financial Intermediation, 20(4), 503-529.
  19. Chung, I. (1995). Market choice and effective demand for credit: The roles of borrower transaction costs and rationing constraints. Journal of Economic Development, 20(2), 23-44.
  20. Ciaian, P., Fałkowski, J., & Kancs, D. A. (2012). Access to credit, factor allocation and farm productivity: Evidence from the CEE transition economies. Agricultural Finance Review, 72(1), 22-47.
  21. Conning, J. (2001). Mixing and matching loans: Complementarity and competition amongst lenders in a rural credit market in Chile.
  22. Degryse, H. & Ongena, S. (2005). Distance, lending relationships, and competition. Journal of Finance, 60(1), 231-266. 
  23. Dufhues, T., Buchenrieder, G., & Hoang, D. Q. (2012). Social capital and loan repayment performance in Northern Vietnam. Agricultural Economics, 43(3), 277-292.
  24. Feder, G., Lau, L. J., Lin, J. Y. & Luo, X. (1990). The relationship between credit and productivity in Chinese agriculture: A microeconomic model of disequilibrium. American Journal of Agricultural Economics, 72(5), 1151-1157.
  25. Ferris, J. S. (1981). A transactions theory of trade credit use. Quarterly Journal of Economics, 96(2), 243-270.
  26. Fischer, R., Huerta, D., & Valenzuela, P. (2019). The inequality-credit nexus. Journal of International Money and Finance, 91, 105-125.
  27. Fletschner, D. (2009). Rural women’s access to credit: Market imperfections and intrahousehold dynamics. World Development, 37(3), 618-631.
  28. Floro, M.S. & Ray, D. (1997). Vertical link between formal and informal financial institutions. Review of Development Economics, 1(1), 34-56.
  29. Franklin, S., Diagne, A., & Zeller, M. (2008). Who is credit constrained? Evidence from rural Malawi. Agricultural Finance Review, 68(2), 255-272.
  30. Freeman, H. A., Ehui, S. K., & Jabbar, M. A. (1998). Credit constraints and smallholder dairy production in the East African highlands: Application of a switching regression model. Agricultural Economics, 19(1-2), 33-44. 
  31. Gershon, F., Lau, L. J., Lin, J. Y., & Luo, X. (1990). The Relationship between credit and productivity in Chinese agriculture: A microeconomic model of disequilibrium. American Journal of Agricultural Economics, 72(5, 1151-1157.
  32. Giné. X. (2001). Access to capital in rural Thailand: An estimated model of formal vs. informal credit. Journal of Development Economics, 96, 16-29.
  33. Guirkinger, C. (2008). Understanding the coexistence of formal and informal credit markets in Piura, Peru. World Development, 36(8), 1436-1452.
  34. Gupta, M. R. & Chaudhuri, G. (1997). Formal credit, corruption and the informal credit market in agriculture: A theoretical analysis.Economica, 64(254, 331-343.
  35. Howorth, C. & Reber, B. (2003). Habitual late payment of trade credit: An empirical examination of UK small firms. Managerial and Decision Economics, 24(6/7), 471-482.
  36. Huyghebaert, N. (2006). On the determinants and dynamics of trade credit use: Empirical evidence from business start-ups. Journal of Business Finance & Accounting, 33(1-2), 305- 328.
  37. Jain, S. (1999). Symbiosis vs. crowding-out: the interaction of formal and informal credit markets in developing countries. Journal of Development Economics, 59(2), 419-444.
  38. Katchova, A. L. (2010). Agricultural contracts and alternative marketing options: A matching analysis. Journal of Agricultural and Applied Economics, 42(2), 261-276.
  39. Kislat, C., Menkhoff, L., & Neuberger, D. (2017). Credit market structure and collateral in rural Thailand. Economic Notes, 9999, 1-46.
  40. Kochar. A. (1997). An empirical investigation of rationing constraints in rural credit markets in India. Journal of Development Economics, 53(2), 339-371.
  41. Kuwornu, J. K. M., Ohene-Ntow, I. D., & Asuming-Brempong, S. (2012). Agricultural credit allocation and constraint analyses of selected maize farmers in Ghana. British Journal of Economics, Management & Trade, 2(4), 353-374.
  42. Mansuri, G. (2007). Credit layering in informal financial markets. Journal of Development Economics, 84, 715-730.
  43. Moro, A., Wisniewski, T. P., & Mantovani, G. M. (2017). Does manager’s gender matter when assessing credit? Evidence from European data. Journal of Banking & Finance, 80, 119-134.
  44. Mushinski, D.W. (1999). An analysis of offer functions of banks and credit unions in Guatemala. Journal of Development Studies, 36(2), 88-112. 
  45. Nilsen. J. H. (2002). Trade Credit and the Bank Lending Channel. Journal of Money, Credit and Banking. 34(1), 226-253.
  46. Petersen, M. A. & Rajan, R. G. (1997). Trade Credit: Theories and Evidence. Review of Financial Studies, 10(3), 661-691. 
  47. Petrick, M. (2004). Farm investment, credit rationing, and governmentally promoted credit access in Poland: A cross-sectional analysis. Food Policy, 29(3), 275-294.
  48. Pufahl, A. & Weiss, C. R. (2009). Evaluating the effects of farm programmes: Results from propensity score matching. European Review of Agricultural Economics, 36(1), 79-101.
  49. Qin, M., Wachenheim, C. J., Wang, Z., & Zheng, S. (2018). Factors affecting Chinese farmers’ microcredit participation. Agricultural Finance Review, 79(1), 48-59. 
  50. Roberts, M. J. & Key, N. (2008). Agricultural payments and land concentration: A semiparametric spatial regression analysis. American Journal of Agricultural Economics, 90(3, 627-643. 
  51. Rosenbaum, P. R. & Rubin, D. B. (1983). The central role of the propensity score in observational studies for causal effects. Biometrika, 70(1), 41-55.
  52. Santos, P. & Barret, C. B. (2011). Persistent poverty and informal credit. Journal of Development Economics, 96, 337-347.
  53. Shoji, M., Kasahara, R., Aoyagi, K., & Sawada, Y. (2012). Social capital formation and credit access: Evidence from Sri Lanka. World Development, 40(12), 2422-2536.
  54. Stiglitz, J. E. & Weiss, A. (1981). Credit rationing in markets with imperfect information. American Economic Review, 71, 393-419. 
  55. Sumane, S., Kunda, I., Knickel, K., Strauss, A., Tisenkofs, T., Rios, I. I, Rivera, M., Chebach, T., & Ashkenazy, A. (2018). Local and farmers’ knowledge matters! How integrating informal and formal knowledge enhances sustainable and resilient agriculture. Journal of Rural Studies, 59, 232-241. 
  56. Teng, J., Lou, K., & Wang, L. (2014). Optimal trade credit and lot size policies in economic production quantity models with learning curve production costs. International Journal of Production Economics, 155, 318-323. 
  57. Tiessen, J. H. & Funk, T. F. (1993). Farmer bargaining when purchasing machinery and fertilizer: A study in commerical negotiation. Agribusiness, 9(2), 129-142.
  58. Udry, C. (1990). Credit markets in Northern Nigeria: Credit as insurance in rural economy. The World Bank Economic Review, 4(3), 251-271. 
  59. Winter-Nelson, A. & Temu, A. A. (2005). Liquidity constraints, access to credit and pro-poor growth in rural Tanzania. Journal of International Development, 17, 867-882. 
  60. Witte, T., DeVuyst, E. A., Whitacre, B., & Jones, R. (2015). Modeling the impact of distance between offices and borrowers on agricultural loan volume. Agricultural Finance Review, 75(4), 484-498.


Impact of Credit Rationing on the Amount of Trade Credit Used by Rice Farmers in the Mekong River Delta


This paper aims to estimate the impact of credit rationing on the amount of trade credit used by rice farmers in the Mekong River Delta (MRD) of Vietnam. Based on the literature review, the paper proposes nine hypotheses concerning the determinants of rice farmers’ access to credit and two hypotheses concerning the impact of credit rationing on the amount of trade credit used by rice farmers in the MRD. Data were collected from 1,065 rice farmers randomly selected out of ten provinces and cities in the MRD. Step 1 of PSM with Probit regression shows that land value, income, education, gender of household head, and geographical distance to the nearest bank affect the degree of credit rationing facing rice farmers. Step 2 of the PSM estimator identifies that non-credit rationed farmers use less trade credit to finance production than their credit rationed counterparts. Moreover, rice farmers’amount of trade credit used increases as the degree of credit rationing goes up. This result divulges that trade credit is a substitute for formal credit.